主題:幾何學
外觀
幾何學
幾何學出現於處理空間關係的知識領域。幾何學是前現代數學的兩個領域之一,另一個是數字的研究。
在近代,幾何學概念已經被擴展。它們有時顯示高水平的抽象和複雜性。幾何學現在使用微積分學和抽象代數的方法,從而使該領域的許多現代分支不容易被辨認出是早期幾何學的後代(見數學領域)。工作於或者是專業從事於幾何學的人是幾何學家。
特色條目
三角函數是數學中常見的一類關於角度的函數。三角函數將直角三角形的內角和它的兩個邊的比值相關聯,也可以等價地用與單位圓有關的各種線段的長度來定義。三角函數在研究三角形和圓等幾何形狀的性質時有重要作用,也是研究周期性現象的基礎數學工具。在數學分析中,三角函數也被定義為無窮級數或特定微分方程的解,允許它們的取值擴展到任意實數值,甚至是複數值。
常見的三角函數包括正弦函數()、餘弦函數()和正切函數(或者)。在航海學、測繪學、工程學等其他學科中,還會用到如餘切函數、正割函數、餘割函數、正矢函數、半正矢函數等其他的三角函數。不同的三角函數之間的關係可以通過幾何直觀或者計算得出,稱為三角恆等式。
三角函數一般用於計算三角形中未知長度的邊和未知的角度,在導航、工程學以及物理學方面都有廣泛的用途。另外,以三角函數為模版,可以定義一類相似的函數,叫做雙曲函數。常見的雙曲函數也被稱為雙曲正弦函數、雙曲餘弦函數等等。
相關專題
歡迎參與
- 歡迎改進或擴充的條目 :
- 請求條目:
- 欄目特色圖片, 和精選傳記
- 幾何學綱要、幾何學歷史、合成幾何學、幾何學議題列表、廣義三角函數
- 超矩形、手性 (數學)、偽三角形、抽象多胞形,考克斯特符號、考克斯特元素、421多胞形、E8、錐面、一萬邊形
- 凸幾何、轉換幾何、代數曲面、Gröbner基、實代數幾何、複幾何
- 模板: Template:Honeycombs、Template:Tessellation、Template:Mathematics and art(數學和藝術)
- 需要繼續擴充或翻譯的條目:
- 需要專家關注
- 張量(tensor)
你知道嗎?
分類
以下的分類樹顯示Category:幾何學下的分類。