跳转到内容

主题:几何学

维基百科,自由的百科全书

几何学

几何学出现于处理空间关系的知识领域。几何学是前现代数学的两个领域之一,另一个是数字的研究。

在近代,几何学概念已经被扩展。它们有时显示高水平的抽象和复杂性。几何学现在使用微积分学抽象代数的方法,从而使该领域的许多现代分支不容易被辨认出是早期几何学的后代(见数学领域)。工作于或者是专业从事于几何学的人是几何学家。

更多阅读 几何学...
刷新以下网页内容(purge)

特色条目

一个定义在球面上的仿射联络,会把点上的整个仿射切平面(详见仿射空间及切空间)转换到另一点上的仿射切平面,此转换是沿着连接两点的曲线而连续变化的。
仿射联络微分几何中定义在流形上的几何概念,连接了邻近几点上的切空间,使得在流形上的切向量场可以求导。仿射联络的概念起源于19世纪的几何学和张量微积分,但那时并没有被完备的定义出来。直到1920年,(用于嘉当联络(Cartan connection)理论)及Hermann Weyl(做为广义相对论的基础理论)。这专门术语是沿用嘉当(Cartan)所使用的术语及根据从欧几里德空间Rn中切空间的推广。换句话说,仿射联络的概念是为了推广欧几里德空间,使得流形上每点都有一个光滑的(可无限求导)仿射空间。

任何维数为正数的流形都会有无穷个仿射联络。仿射联络能用来决定在向量场上求导,并满足线性莱布尼兹法则的方法,这表明了仿射联络有几个可行的方法,像是协变导数或在向量丛上的联络。仿射联络也能用来决定在切向量沿着一条曲线平行移动的方式,或者用来决定标架丛的平行移动。仿射联络也可以用来决定流形上的测地线,推广了欧几里德空间中直线的概念。


相关专题

WikiProjects
几何学专题

此专题是旨在协调几何学相关条目的翻译与撰写,和相关的讨论。

相关专题

什么是维基专题?

欢迎参与

欢迎改进或扩充的条目 :


请求条目:
需要继续扩充或翻译的条目:
需要专家关注


你知道吗?

分类

相关主题

基本议题

维基媒体

进入以下维基媒体计划可获取更多相关信息:

刷新服务器缓存