在数学中,雙曲函數恆等式是对出现的变量的所有值都为實的涉及到雙曲函數的等式。这些恒等式在表达式中有些雙曲函數需要简化的时候是很有用的。雙曲函數的恆等式有的與三角恆等式類似。就如同三角函數,他有一个重要应用是非雙曲函數的积分:一个常用技巧是首先使用换元积分法,規則與使用三角函数的代换规则類似,则通过雙曲函數恆等式可简化结果的积分。
|
函数
|
倒數函数
|
|
全寫
|
簡寫
|
全寫
|
簡寫
|
函数
|
hyperbolic sine
|
sinh
|
hyperbolic cosecant
|
csch
|
反函数
|
inverse hyperbolic sine
|
arcsinh
|
inverse hyperbolic cosecant
|
arccsch
|
函数
|
hyperbolic cosine
|
cosh
|
hyperbolic secant
|
sech
|
反函数
|
inverse hyperbolic cosine
|
arccosh
|
inverse hyperbolic secant
|
arcsech
|
函数
|
hyperbolic tangent
|
tanh
|
hyperbolic cotangent
|
coth
|
反函数
|
inverse hyperbolic tangent
|
arctanh
|
inverse hyperbolic cotangent
|
arccoth
|
雙曲函數基本恒等式如下:
|
|
|
|
就如同三角函數,由上面的平方關係加上雙曲函數的基本定義,可以導出下面的表格,即每個雙曲函數都可以用其他五個表達。(严谨地说,所有根号前都应根据实际情况添加正负号)
函數
|
sinh
|
cosh
|
tanh
|
coth
|
sech
|
csch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
三角函數還有正矢、餘矢、半正矢、半餘矢、外正割、外餘割等函數,利用他們的定義也可以導出雙曲函數。
名稱
|
函數
|
值
|
雙曲正矢, hyperbolic versine
|
|
|
雙曲餘矢, hyperbolic coversine
|
|
|
雙曲半正矢 , hyperbolic haversine
|
|
|
雙曲半餘矢 , hyperbolic hacoversine
|
|
|
雙曲外正割 , hyperbolic exsecant
|
|
|
雙曲外餘割 , hyperbolic excosecant
|
|
|
- (罗朗级数)
- (罗朗级数)
其中
- 是第n項 伯努利數
- 是第n項 欧拉數
利用三角恒等式的指數定義和雙曲函數的指數定義即可求出下列恆等式:
所以
下表列出部分的三角函數與雙曲函數的恆等式:
三角函數
|
雙曲函數
|
|
|
|
|
|
|
|
|
|
|
|
|