非厄米量子力學
PT 對稱性最初是被當作非厄米量子力學中的一個特殊系統而進行研究的, [1] [2]此時哈密頓量不是厄米的。 在1998 年,物理學家 Carl Bender 和他前研究生 Stefan Boettcher 在《物理評論快報》上發表了一篇量子力學論文《具有 PT 對稱性的非厄米哈密頓量的實譜》。 [3]在本文中,作者發現具有 PT 對稱性(需要在宇稱反轉和時間反演對稱算子之同時作用下的不變性)的非厄米哈密頓量也可能擁有實數譜(否則非厄米哈密頓量能譜一般是複數)。在正確定義的內積下,PT 對稱哈密頓量的本徵函數具有正範數並表現出幺正時間演化,滿足量子理論的要求。 [4] Bender 因這個工作獲得了 2017 年丹尼·海涅曼數學物理獎。 [5]
一個與非厄米量子力學密切關聯的概念是贗厄米算子,物理學家 保羅·狄拉克 [6]、 沃爾夫岡·泡利 [7]以及李政道、吉安·卡羅·威克 [8]曾考慮過此概念。數學家 馬克·克林 等人幾乎同時將 贗厄米算子作為他們在線性動力系統的研究中的 G-Hamiltonian 來發現(或說是重新發現) [9] [10] [11] [12]。這裡贗厄米性和 G-Hamiltonian 之間的等價性很容易建立。 [13]
在 2002 年,阿里·穆斯塔法扎德(Ali Mostafazadeh)證明,每個具有實譜的非厄米哈密頓算子都是贗厄米算子。他發現可對角化的 PT 對稱非厄米哈密頓量都屬於贗厄米哈密頓量。 [14] [15] [16]然而,這個結果沒有太大的幫助,因為基本上有趣的物理現象都發生在獨特點處,而在這點處的哈密頓量不可被對角化,或者說是缺陷的[17] [18] 。最近證明,在有限維數中,不管是否可以被對角化,PT 對稱性都蘊含了贗厄米性。 [13]這表明在獨特點處 PT 對稱性破缺的機制,也就是兩個具有相反符號的本徵模式間在該點處發生的 Krein 碰撞。
2005 年,Gonzalo Muga 的研究組將 PT 對稱性的概念引入了光學領域,指出 PT 對稱性對應於增益和損耗的平衡。 [19] 在 2007 年,物理學家 Demetrios Christodoulides 和他的合作者進一步研究了 PT 對稱性在光學中的意義。 [20] [21]接下來的幾年在被動和主動系統中, PT 對稱性也被實驗首次展現。 [22] [23] 此外 PT 對稱性的概念也被應用於經典力學、超材料、電路和核磁共振。 [24] [20] 在2017 年, Dorje Brody 和 Markus Müller 提出了一個「形式上滿足希爾伯特-波利亞猜想的條件」的 PT 對稱的非厄米哈密頓量。 [25] [26]
參考
[編輯]- ^ N. Moiseyev, "Non-Hermitian Quantum Mechanics", Cambridge University Press, Cambridge, 2011
- ^ Non-Selfadjoint Operators in Quantum Physics: Mathematical Aspects. Wiley.com. 2015-07-20 [2018-06-12]. (原始內容存檔於2021-11-28) (美國英語).
- ^ Bender, Carl M.; Boettcher, Stefan. Real Spectra in Non-Hermitian Hamiltonians Having $\mathsc{P}\mathsc{T}$ Symmetry. Physical Review Letters. 1998-06-15, 80 (24): 5243–5246. Bibcode:1998PhRvL..80.5243B. S2CID 16705013. arXiv:physics/9712001 . doi:10.1103/PhysRevLett.80.5243.
- ^ Bender, Carl M. Making sense of non-Hermitian Hamiltonians. Reports on Progress in Physics. 2007, 70 (6): 947–1018. Bibcode:2007RPPh...70..947B. ISSN 0034-4885. S2CID 119009206. arXiv:hep-th/0703096 . doi:10.1088/0034-4885/70/6/R03.
- ^ Dannie Heineman Prize for Mathematical Physics. [2023-01-23]. (原始內容存檔於2020-10-22).
- ^ Dirac, P. A. M. Bakerian Lecture - The physical interpretation of quantum mechanics. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences. 18 March 1942, 180 (980): 1–40. Bibcode:1942RSPSA.180....1D. doi:10.1098/rspa.1942.0023 .
- ^ Pauli, W. On Dirac's New Method of Field Quantization. Reviews of Modern Physics. 1 July 1943, 15 (3): 175–207. Bibcode:1943RvMP...15..175P. doi:10.1103/revmodphys.15.175.
- ^ Lee, T.D.; Wick, G.C. Negative metric and the unitarity of the S-matrix. Nuclear Physics B. February 1969, 9 (2): 209–243. Bibcode:1969NuPhB...9..209L. doi:10.1016/0550-3213(69)90098-4.
- ^ M. G. Krein, 「A generalization of some investigations of A. M. Lyapunov on linear differential equations with periodic coefficients,」 Dokl. Akad. Nauk SSSR N.S. 73, 445 (1950) (Russian).
- ^ M. G. Krein, Topics in Differential and Integral Equations and Operator Theory (Birkhauser, 1983).
- ^ I. M. Gel』fand and V. B. Lidskii, 「On the structure of the regions of stability of linear canonical systems of differential equations with periodic coefficients,」 Usp. Mat. Nauk 10:1(63), 3−40 (1955) (Russian).
- ^ V. Yakubovich and V. Starzhinskii, Linear Differential Equations with Periodic Coefficients (Wiley, 1975), Vol. I.
- ^ 13.0 13.1 Zhang, Ruili; Qin, Hong; Xiao, Jianyuan. PT-symmetry entails pseudo-Hermiticity regardless of diagonalizability. Journal of Mathematical Physics. 2020-01-01, 61 (1): 012101 [2023-01-23]. Bibcode:2020JMP....61a2101Z. ISSN 0022-2488. S2CID 102483351. arXiv:1904.01967 . doi:10.1063/1.5117211. (原始內容存檔於2023-01-23) (英語).
- ^ Mostafazadeh, Ali. Pseudo-Hermiticity versus symmetry: The necessary condition for the reality of the spectrum of a non-Hermitian Hamiltonian. Journal of Mathematical Physics. 2002, 43 (1): 205–214. Bibcode:2002JMP....43..205M. ISSN 0022-2488. S2CID 15239201. arXiv:math-ph/0107001 . doi:10.1063/1.1418246.
- ^ Mostafazadeh, Ali. Pseudo-Hermiticity versus PT-symmetry. II. A complete characterization of non-Hermitian Hamiltonians with a real spectrum. Journal of Mathematical Physics. 2002, 43 (5): 2814–2816. Bibcode:2002JMP....43.2814M. ISSN 0022-2488. S2CID 17077142. arXiv:math-ph/0110016 . doi:10.1063/1.1461427.
- ^ Mostafazadeh, Ali. Pseudo-Hermiticity versus PT-symmetry III: Equivalence of pseudo-Hermiticity and the presence of antilinear symmetries. Journal of Mathematical Physics. 2002, 43 (8): 3944–3951. Bibcode:2002JMP....43.3944M. ISSN 0022-2488. S2CID 7096321. arXiv:math-ph/0107001 . doi:10.1063/1.1489072.
- ^ Bergholtz, Emil J.; Budich, Jan Carl; Kunst, Flore K. Exceptional topology of non-Hermitian systems. Reviews of Modern Physics. 2021-02-24, 93 (1): 015005. Bibcode:2021RvMP...93a5005B. S2CID 209444748. arXiv:1912.10048 . doi:10.1103/RevModPhys.93.015005.
- ^ Ashida, Yuto; Gong, Zongping; Ueda, Masahito. Non-Hermitian physics. Advances in Physics (Informa UK Limited). 2020-07-02, 69 (3): 249–435. ISSN 0001-8732. doi:10.1080/00018732.2021.1876991.
- ^ Ruschhaupt, A; Delgado, F; Muga, J G. Physical realization of -symmetric potential scattering in a planar slab waveguide. Journal of Physics A: Mathematical and General. 2005-03-04, 38 (9): L171–L176. ISSN 0305-4470. S2CID 118099017. arXiv:1706.04056 . doi:10.1088/0305-4470/38/9/L03.
- ^ 20.0 20.1 Bender, Carl. PT symmetry in quantum physics: from mathematical curiosity to optical experiments. Europhysics News. April 2016, 47, 2 (2): 17–20 [2023-01-23]. Bibcode:2016ENews..47b..17B. doi:10.1051/epn/2016201. (原始內容存檔於2019-10-30).
- ^ Makris, K. G.; El-Ganainy, R.; Christodoulides, D. N.; Musslimani, Z. H. Beam Dynamics in $\mathcal{P}\mathcal{T}$ Symmetric Optical Lattices. Physical Review Letters. 2008-03-13, 100 (10): 103904. Bibcode:2008PhRvL.100j3904M. PMID 18352189. doi:10.1103/PhysRevLett.100.103904.
- ^ Guo, A.; Salamo, G. J.; Duchesne, D.; Morandotti, R.; Volatier-Ravat, M.; Aimez, V.; Siviloglou, G. A.; Christodoulides, D. N. Observation of $\mathcal{P}\mathcal{T}$-Symmetry Breaking in Complex Optical Potentials. Physical Review Letters. 2009-08-27, 103 (9): 093902. Bibcode:2009PhRvL.103i3902G. PMID 19792798. doi:10.1103/PhysRevLett.103.093902.
- ^ Rüter, Christian E.; Makris, Konstantinos G.; El-Ganainy, Ramy; Christodoulides, Demetrios N.; Segev, Mordechai; Kip, Detlef. Observation of parity–time symmetry in optics. Nature Physics. March 2010, 6 (3): 192–195. Bibcode:2010NatPh...6..192R. ISSN 1745-2481. doi:10.1038/nphys1515 .
- ^ Miller, Johanna L. Exceptional points make for exceptional sensors. Physics Today. October 2017, 10, 23 (10): 23–26. Bibcode:2017PhT....70j..23M. doi:10.1063/PT.3.3717 .
- ^ Bender, Carl M.; Brody, Dorje C.; Müller, Markus P. Hamiltonian for the Zeros of the Riemann Zeta Function. Physical Review Letters. 2017-03-30, 118 (13): 130201. Bibcode:2017PhRvL.118m0201B. PMID 28409977. S2CID 46816531. arXiv:1608.03679 . doi:10.1103/PhysRevLett.118.130201.
- ^ Quantum Physicists Attack the Riemann Hypothesis | Quanta Magazine. Quanta Magazine. [2018-06-12]. (原始內容存檔於2023-07-27).