跳转到内容

截半正二十四胞体

本页使用了标题或全文手工转换
维基百科,自由的百科全书
截半正二十四胞体
類型均匀多胞体
識別
名稱截半正二十四胞体
參考索引2 3 4
數學表示法
考克斯特符號
英语Coxeter-Dynkin diagram
node 3 node_1 4 node 3 node 
施萊夫利符號t1{3,4,3}
性質
10
24 (4.4.4)
24 (3.4.3.4)
240
144 {4}
96 {3}
288
頂點96
組成與佈局
顶点图
Elongated triangular prism
對稱性
考克斯特群F4, [3,4,3], order 1152
特性
convex, isogonal

截半正二十四胞体由48个三维胞组成: 24个立方体, 和24个截半立方体。每个顶点周围环绕着三个截半立方体和两个立方体

构造

[编辑]

截角正二十四胞体的细胞可以通过在正二十四胞体的棱的中点处截断其顶点。截断的24个正八面体变成新的截半立方体,并在原来的顶点处产生了24个新的立方体

结合

[编辑]

截角八面体的三角形面彼此结合在一起,而它们的正方形面则连接到立方体

投影

[编辑]
正交投影
Fk
考克斯特平面
F4 B4 B3 B2
Graph
二面体群 [12] [6] [8] [4]

注释

[编辑]

参考文献

[编辑]
  • H.S.M. Coxeter:
    • H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
    • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, editied by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1]页面存档备份,存于互联网档案馆
      • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
      • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
      • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • Coxeter, The Beauty of Geometry: Twelve Essays, Dover Publications, 1999, ISBN 0-486-40919-8 p.88 (Chapter 5: Regular Skew Polyhedra in three and four dimensions and their topological analogues, Proceedings of the London Mathematics Society, Ser. 2, Vol 43, 1937.)
    • Coxeter, H. S. M. Regular Skew Polyhedra in Three and Four Dimensions. Proc. London Math. Soc. 43, 33-62, 1937.
  • Norman Johnson Uniform Polytopes, Manuscript (1991)
    • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. (1966)
  • Olshevsky, George, Pentachoron at Glossary for Hyperspace.
  • Klitzing, Richard. 4D uniform polytopes (polychora). bendwavy.org.  x3x3o3o - tip, o3x3x3o - deca