跳至內容

File:Academ Example of similarity with ratio square root of 2.svg

頁面內容不支援其他語言。
這個檔案來自維基共享資源
維基百科,自由的百科全書

原始檔案 (SVG 檔案,表面大小:600 × 600 像素,檔案大小:3 KB)


摘要

描述
English: One of the two classical squares is the image of the other square under several similarities.  Each of them has a ratio equal to  √2  or its inverse, because of the ratio  2  or  0.5  between the areas of the squares.  As any similarity that is not an isometry, each similarity that transforms one square into the other one has a unique fixed point, called its center.  The center of some similarities is a vertex common to the squares. For example, the point A  is obviously the center of the indirect similarity that shrinks the triangle EFA  into BTA.  This drawing shows the direct similarity that shrinks EFA  into ATB.  Another drawing with the same notations shows the direct similarity with center A,  that enlarges the triangle BCA  into EFA.

We conceive the direct similarity that transforms AEF  into  BAT and  B  into  C because of four thin red lines. Each of them begins with an arc of 135 degrees that starts from a vertex of  ABEF and finishes by going straight to the image of the start point, and straight toward S.  As any direct plane similarity that is not an isometry, the exhibited similarity is the composition of an homothety and a rotation with the same center S.  The exhibited homothety has a positive ratio, so its ratio equals the ratio of the similarity:  1/ √2 And the angle of the rotation is  + 135 degrees  modulo  360 degrees:  the angle of the similarity.

We can construct the center S  of this similarity solely because of its oriented angle  + 135 degrees. This point S  is the intersection of the two blue quarter-circles. Each of them is drawn inside a square, its center is F  or  T,  and its radius is the dimension of the square:  AF  or  BT.

The two legs of the right triangle AEF are drawn in red, and the letters A  and F  are red. The rotation transforms these red legs into a blue line, and the images of A  and F  under the rotation are named with blue letters: U  and W.  The homothety transforms the blue line into a green line: the two legs of the isosceles right triangle BAT.  The letters B  and T are green.
 
Français : L’un des deux carrés classiques est l’image de l’autre carré par plusieurs similitudes. Chacune d’entre elles a un rapport égal à  √2  ou à son inverse, à cause du rapport  2  ou  0,5  entre les aires des deux carrés. Comme toute similitude qui n’est pas une isométrie, chaque similitude qui transforme l’un en l’autre carré a un point invariant unique, appelé son centre. Le centre de certaines similitudes est un sommet commun aux carrés. Par exemple, le point A  est évidemment le centre de la similitude indirecte qui réduit le triangle EFA  en BTA. Ce dessin montre la similitude directe qui réduit EFA  en ATB.  Un autre dessin avec les mêmes notations montre la similitude directe de centre A,  qui agrandit le triangle BCA  en EFA.

On conçoit la similitude directe qui transforme AEF  en  BAT et  B  en  C grâce à quatre fines lignes rouges. Chacune commence par un arc de 135 degrés qui part d’un sommet de  ABEF et se termine en allant tout droit à l’image du point de départ, et tout droit vers S.  Comme toute similitude plane directe qui n’est pas une isométrie, la similitude exhibée est la composée d’une homothétie et d’une rotation de même centre S.  L’homothétie exhibée a un rapport positif, alors son rapport est égal au rapport de la similitude :  1/ √2 Et l’angle de la rotation est  + 135 degrés  modulo 360 degrés :  l’angle de la similitude.

On peut construire le centre S  de cette similitude en raisonnant seulement sur son angle orienté  + 135 degrés. Ce point S  est l’intersection des deux quarts de cercles bleus. Chacun d’eux est tracé à l’intérieur d’un carré, son centre est F  ou  T,  et son rayon est la dimension du carré :  AF  ou  BT.

Les deux côtés de l’angle droit du triangle rectangle AEF sont tracés en rouge, et les lettres A  et F sont rouges. La rotation transforme ces côtés rouges en une ligne bleue, et les images de A  et F  par la rotation sont nommées par des lettres bleues : U  et W.  L’homothétie rétrécit la ligne bleue en une ligne verte :  les deux côtés de l’angle droit du triangle rectangle isocèle BAT.  Les lettres B  et T sont vertes.
日期
來源 自己的作品
作者 Yves Arthur Baelde
SVG開發
InfoField
 
SVG檔案的原始碼通過W3C驗證
 

授權條款

Arthur Baelde,此作品的版權所有人,決定用以下授權條款發佈本作品:
w:zh:共享創意
姓名標示 相同方式分享
姓名標示: Arthur Baelde
您可以自由:
  • 分享 – 複製、發佈和傳播本作品
  • 重新修改 – 創作演繹作品
惟需遵照下列條件:
  • 姓名標示 – 您必須指名出正確的製作者,和提供授權條款的連結,以及表示是否有對內容上做出變更。您可以用任何合理的方式來行動,但不得以任何方式表明授權條款是對您許可或是由您所使用。
  • 相同方式分享 – 若要根據本素材進行再混合、轉換或創作,則必須以與原作相同或相容的授權來發布您的作品。

說明

添加單行說明來描述出檔案所代表的內容
The inverse of a similarity that multiplies areas by 2 and lengths by √2 is decomposed into a rotation and a homothety of same center:  the intersection of two quarters of circles.  Angle and anticlockwise direction of this rotation are indicated.

在此檔案描寫的項目

描繪內容

著作權狀態 繁體中文 (已轉換拼寫)

有著作權 繁體中文 (已轉換拼寫)

檔案來源 Chinese (Taiwan) (已轉換拼寫)

上傳者的原創作品 繁體中文 (已轉換拼寫)

多媒體型式 繁體中文 (已轉換拼寫)

image/svg+xml

校驗和 繁體中文 (已轉換拼寫)

a076d15d0f8113a0ab83a447054ae2efe9d389b3

斷定方法:​SHA-1 中文 (已轉換拼寫)

2,753 位元組

600 像素

600 像素

檔案歷史

點選日期/時間以檢視該時間的檔案版本。

日期/時間縮⁠圖尺寸用戶備⁠註
目前2022年3月1日 (二) 12:49於 2022年3月1日 (二) 12:49 版本的縮圖600 × 600(3 KB)Arthur Baelde better framing,  lighter colors and other improvements 
2011年9月18日 (日) 10:25於 2011年9月18日 (日) 10:25 版本的縮圖625 × 625(3 KB)Baelde code SVG   stroke-linejoin="bevel"  in element g 
2011年9月18日 (日) 10:21於 2011年9月18日 (日) 10:21 版本的縮圖625 × 625(3 KB)Baelde{{Information |Description ={{en|1=One of the two classical squares is the image of the other square under several similarities. Each of them

下列頁面有用到此檔案:

全域檔案使用狀況

以下其他 wiki 使用了這個檔案:

詮釋資料